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Drifting spatial structures in a system with oppositely driven species

K.-t. Leung' and R. K. P. Zi&
nstitute of Physics, Academia Sinica, Taipei, Taiwan 11529, Republic of China
2Center for Stochastic Processes in Science and Engineering, Physics Department, Virginia Polytechnic Institute and State University,
Blacksburg, Virginia 24061-0435
(Received 3 February 1997

A system consisting of two conservative, oppositely driven species of particles with excluded volume
interactionaloneis studied on a torus. The system undergoes a phase transition between homogeneous and
inhomogeneous phases, as the particle densities are varied. Focusing on the inhomogeneous phase with gen-
erally unequal numbers of the two species, the spatial structure is found to drift counterintuitively against the
majority species at a constant velocity that depends on the external field, system size, and particle densities.
Such dependences are derived from a coarse-grained continuum theory, and a microscopic mechanism for the
drift is explained. With virtually no tuning parameter, various theoretical predictions, notably a field-system-
size scaling, agree extremely well with the simulatidi&l063-651X97)09707-9

PACS numbsgs): 64.60.Cn, 05.70.Fh, 66.30.Hs, 82.20.Mj

I. INTRODUCTION with the majority In this paper, we study such inhomoge-
neous states with both simulation and analytic techniques.
In the recent decade, there was considerable interest in tterhaps the most surprising of the results is that, in the or-
statistical mechanics of a variety of systems in stationary, bulered phase, the spatial structure, as a whole, drifts in a
norequilibrium, states. Notable examples include fast ionicdirectionoppositeto the intuitive picture above.
conductors, surface growth, electromigration, flux creep in The remainder of this paper is organized as follows. In
superconductors, propagation of defects and cracks, electr&ec. Il, we provide specifications of this model and some
phoresis, and granular as well as traffic flow. Apart fromdetails of the Monte Carlo runs. We present the simulation
practical applications, the interest lies in the need to establisfesults of the counterintuitive motion of inhomogeneous
a sound foundation for nonequilibrium statistical mechanicsstates and suggest its microscopic mechanism in Sec. lIl.
on par with the Boltzmann-Gibbs formulation for systems inSection 1V is devoted to the continuum mean-field approach,
equilibrium. To pursue these goals, many authors have prévhich was relatively successful in describing the charge-
posed simple models, just as Lenz and Ising[diklin order ~ neutral model[4,6,7] and will be reanalyzed for the more
to understand the phenomena of phase transitions of a mageneral case here. These theoretical predictions are then
net in thermal equilibrium. Along these lines, Katz, Lebow- compared to the simulation data in Sec. V. Particular atten-
itz, and Spohri2] introduced the simplériven Ising lattice  tion will be paid to the scaling of the drive with the system
gas, as an “entry” into the physics of nonequilibrium steadysize, and the dependence of the drift velocity on control pa-
states. Since then, this field has steadily grown, so that thef@meters. We end with some concluding remarks in Sec. VI.
now exists many variations and generalizations of the proto
model[3]. o _ Il. A MODEL FOR DIFFUSION OF TWO,
One of the_ most natL_JraI generah.zatlons are systems with a OPPOSITELY BIASED, SPECIES
second species of particles. The simplest of these is a model
with equal numbers of oppositely “charged” particles, Generalizing the work of Ising, Potfsdl2] and Blume,
driven by a uniform external “electric” field and diffusing Emery, and Griffithg§13] introduced models which consisted
on a periodic, square lattidg]. With no interparticle inter-  of only three or more states per site in order to describe
actions, except the excluded volume constraint, this systemarious systems such as magnets with spin one or higher and
exhibits a phase transition, for critical values of the particleternary mixtures. Along similar lines, the natural generaliza-
density and external field, from a homogeneous disorderetion of the driven Ising lattice gaj2] would be models of
state with a sizable current to an inhomogeneous state with $everal species of particles, driven far from equilibrium by
minute current. Particles of the opposite charge impede eactpme “external” field. Clearly, there are many physical sys-
other and “lock up” into a dense region. By symmetry, the tems for which such models may be applicable. Here we will
average location of this region is tinledependentSince its  focus on the simplest ord].
inception, a number of its properties are reasonably well un- On a square lattice with, XL, sites, we placeN.. par-
derstood[5—8], while a variety of related ones have beenticles with “charge” =1. At each site, there will be at most
proposed9—11]. However, none of these studies focused onone particle, regardless of its charge. Thus a configuration of
a system withunequalnumbers of the two species. Assum- our model is completely specified by the set of occupation
ing that a locked-up state still exists, one should not expeatumbers{n.(x,y)}, wheren.(x,y)=1 or 0, if there is a
the dense region to remain stationary. In particular, we can: particle at site X,y) or not. Apart from this excluded
expect a larger number of the majority species to lie withinvolume constraint, there is no interaction between the par-
this region, and so, naturally expect the blockadvance ticles. However, there is an external “electric” fiekl cho-
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sen to point in thety direction, so that a+ (—) particle is 0
biased against moving in the (+)y direction. Specifically,

the system evolves by random updating. In each trial, a pair

of nearest neighbors is randomly chosen. If it is a particle-

hole pair, then the particle hops into the hole with a prob- -100

ability min{1,e*5¥3} for the = species, whera denotes the

direction of hoppingL, XL, such trials constitute one time t’g

step(or one sweep Finally, we impose periodic boundary >

conditions, so that our lattice is in fact a torus. For later -200 ¢

convenience, let us define the terms “overall mass density” —— E=0.3,p=0.09

and “overall charge density,” given, respectively, by E=0.5, p=0.09

N, +N_ N, —N_ -300 X X
m=——— and qg=———. (1) 0 40000 80000
LyLy LiLy t (sweeps)

the two species. The system is purely diffusive and unintermhomogeneous state. The steady, backward drift velocity decreases
esting. On the other hand, f&>0, particles of the opposite yith increasing average density of the minority phase.=0.25
charge impede each other. This mutual blocking is so severgqe=0.1976, except where otherwise stated.

that the system displays drastically different characteristics if

the particle densities are high enough. In all previous studies IIl. DRIFTING STEADY-STATE STRUCTURES

[4—6] of this model,q is restricted to zero for simplicity, so FROM SIMULATIONS

that there are only two control parameteEsf) besides the ) ) ) )

system size. There, for fixeH, say, the steady state of the Since our purpose here is to study the mterestmg proper-
system is disordered and homogeneous, providéd small  1i€S associated withnequalnumbers of the two species, we
enough. By symmetry, the two opposing particle currents ar€&y out  simulations  with  fixed particle density
the same, on the average. Thus theerage hole current (p+=N_/L,L,) for the + species and varying density for
C is zero, while thgaverage charge currend is nontrivial.  the — Speciesb__EN_ /LxLy<P_+), corresponding to

As m increases,] increases sublinearly, as a result of the

excluded volume constraint as well as the mutual blocking. q:p_+—p__>0.

Oncem rises beyond a critical value.(E), a phase transi-

tion occurs so thqt the system is or.dered into an inhompgerhe behavior for the case gf<0 may be deduced simply by
neous state. In this state, three regions can be roughly ide ymmetry. Specifically, we choose, =2, L, =10, 20, and

tified: one particle-poor and two particle-rich zones, one 040,Ly=40, 160, and 320, anid ranging from about 0.1 to 1.

each speci(_as. AS. might be expected, these regions.span tl?ﬁese parameters are chosen in order to probejth@ re-
transversedimension of the latticel(,), with each particle- . e .
gion close to the=0 inhomogeneoustates near the transi-

rich zone impeding the “forward motion” of the other spe- > : .
. . . tion mentioned above, for we expect the properties to be
cies. For systems witlD(1) aspect ratios, these zones are .
) o=t " more pronounced there. In contrast, the particles can hardly
purely transverse to the drive, i.e., the densitieshemmoge- . . L .
move deep in the locked-up phase at higher densities. Simu-

neousin x. The current drqps to vanishing values. Bfis lations for differentL,’s show that the effect of, is negli-
sufficiently large, this transition is extremely sharp and dra-

matic [4]. With larger aspect ratios, the system often Iocksg'ble’ as found forh.thﬁ symm_ﬁtnq,—o ca_ze[4]r.] Thus, un-

up into somewhat different states, with zones spanning botﬁes‘s’l.LX> L.¥h[5]’ wt|c we \r']".' hnotlcon3| efrthergz we are

x andy, i.e., wrapping around the torus with nontrivial wind- Iea ing with a sysl er’ln In which only one of the dimensions
ing numberg5]. The current still suffers a drop, though not plays ar_1 essentia rg e —

to vanishingly small amounts. In either case, once lock-up Starting from the inhomogeneous state with=p , , we
occurs, these zones are stationary on the average, sinfBd @ phase transition into a homogeneous state as we gradu-
C=0 always. ally decreasep _ with p, held fixed. On the §,m) plane,

In this paper, we will study systems witmequalnum-  the phase boundary between the homogeneous and inhomo-
bers of the two species. With+0, many of the previous geneous states may be located this way, which is symmetric
properties will be different, although we still expect the pres-about them axis. However, a detailed discussion of the
ence of a phase transition. For example, in the homogeneoyiase diagram is beyond the scope of this paper.
state, C will not vanish, and propagating fluctuations are  Focusing on the properties of tlgg>0 inhomogeneous
possible. Deferring a comprehensive study of this model to &tates, we find that the locked-up region of the two species
later publication]14], we will focus here only on thénho-  drifts backwardswith respect to the driving direction for the
mogeneous staté which the zones are expected to drift. As majority (+) species at a definite velocity that increases
we will demonstrate and explain, the system displays a courwith g but decreases witk, as shown in Fig. 1. Figure 2
terintuitive feature, i.e., the spatial structures drift in the di-shows a typical inhomogeneous configuration in the steady
rection favored by theminority species. For example, the state forq>0. The steady-state ensemble averages of the
inhomogeneities will drift in the negative direction if g is  local density profiles for the two speciep,, (y,t) and
positive. p_(y,t), are measured. Due to the drift, they are functions of
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T 0 E is not too large, there are finite densities of holes inside the

e TR block. Forq=0, these densities are on the average the same
b oo znn : in the + and — zone. Forg>0, there are more holes in the
! N u: go® %8 — zone because it is thinnéits thickness given roughly by
o P9, ° nu:qz ”B @ g p-Ly). With holes available on the inner+—) zone

® e un°¢ o @ boundary, a particle may escape from the block to the
&chB:‘ % particle-poor region through the zone of thigpositespecies.

ofe . '*’ a Driven alongE, then, it eventually returns to the outer edge

3 -a“B”__ﬂ-_H_h o T of its own zone due to periodic boundary conditions. When a
¥ 2o, B particle leaves the inner zone boundary, a hole is left behind

Cy which may drift in either direction towards an outer zone

boundary, returning to the hole-rich region. Fpr 0, on the

| average, the number of holes impinging on an outer zone
il iy : boundary equals the number of incoming particles. Thus,
il apart from a migration of particles from the inner to the outer
: zone edges, the cluster remains stationary. dee0, how-
ever, it is relatively easier for- particles to migrate. This
i results in more particles than holes impinging on the outer
Hr] zone boundary, and the opposite for thezone. It is this
imbalance that causes the whole cluster to drift backwards.

mwn
=]
o
Q =
=
=
& o g
ot
i

P B 2 o a8 Of course it is clear from our argument thatnust vanish if
e P o Ey E=<. In order to see how this arises theoretically and to
o o0 o0 3 Q explore theE and g dependence of, we now turn our
L2 ® gl attention to a continuum description.
o o u:rg o oo
o a 4o B °
I A IV. CONTINUUM MEAN-FIELD DESCRIPTION

Following previous studies of this modgt—8|, we rely
FIG. 2. A typical 40< 160 configuration in steady state showing On @ mean-field-type continuum theory to understand the
the blockage between the two species. The offidled) squares macroscopic properties here. The equations of motion for the
represent the upwar@ownward, or + (—) drifting species. Note densities, first proposed in Ref4], need no modification
that there are more- particles escaping through the blockage to and, for completeness, are summarized be{8ec. IV A).
cause the structure to driflownwardsHerep, =31, p_=0.1,and However, the overall constraint on the charge density will be
E=0.1976. different, leading to qualitatively new behavior such as drift-
ing inhomogeneous solutioriSec. 1V B).
u=y—vt alone. Figure 3 displays the steady-state density
profilesp.. (u) for various values of/>0. A. Equations of motion

To understand the microscopic mechanism for this back- . :
. L . ! To describe the long-wavelength, low-frequency behavior

ward motion, it is instructive to consider the role of holes . :
of our model, we make use of the continuum approach, in

|nS|d_e the two_partlcle—rlqh Zones. The probability for a hOIeWhich discrete variables of both the lattice and occupation
to diffuse against the drive into these zones from the outer

zone boundaries is suppressedibyia e E. Thus, provided numt_)grs,nt(x,y), are replaced by contmuqus ones for the
densities and space-time.(r,t). Forr, we will continue to

write (x,y), which should not lead to any confusion, and let

1 ——— - xe[0.L,) , etc. The evolution equations of these densities
p=0.1 7 ~ may be “derived” from the Master equation by taking the
08| — 0.12 /I )\ I,’ \\ continuum limits of the “mean-field” approximation in
— 046! 4 AN which joint probabilities are factor_izeﬁl(_)], or they may
06 | / | \ | simply be postulated through considerations of symmetries.
= -- 02 ! ‘} 4 In the former approach, the parameters in the continuum
= ! i 4 equation can be related to the microscopic rates. Since we
04 r / ! \ will not be concerned with the absolute time scale, one pa-
! i v \ rameter may be absorbed into the definitiontoin other
02 I/ /I \ \\ : words, we will set the diffusion constant, for thumdriven
/ Y/ \\ \ case, to be unity. Only one parameter remains, associated
0 . ZANER with the driving field. If the naive continuum limit approach
0 40 80 120 160 is taken, then it is
u
E=2taniE/2). 2

FIG. 3. Steady-state density profiles of aX2060 system for

different p_ , at fixed p, = 2 andE=0.1976.p, (u) is on the left, With these considerations, we study the following equa-
p_(u) is on the right, andi=y—ut. tions of motion, written in the form of continuity equations:
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p= whered stands ford/du. Integrating once, we obtain

—r =V [¢Vp.—p.VoFp. deYl, 3

dp+EPY+vdp=—C, 10
where¢p=1—p, —p_ is the density of holes, angldenotes (10
a unit vector along the direction. Notice that the first two GIY— Yop—ED(1— ) +vip=—1J.

terms in these equations describe free diffusion of two dis-

tinguishable species of particles. The last term correspondgne constant€ andJ may be interpreted as the two steady-
to the Ohmic currents, witp. ¢ being the usual density- state currents for the holes and the charges, respectively, in
dependent conductivity. It is also natural to consider the sunfhe moving frameln the “lab frame,” the currents should be
and difference of these equations. Definiig=p.. —p_ 10 inhomogeneous, due to the anticipated drift of the block. As

be the charge density, they take the form it stands, Egs.(10) contain three unknown constants
i (v,C,J), which will have to be fixed by three conditions, i.e.,
— =V [Vo+ dysy], (4) solutions be of period.,, Egs.(6) and (7). However, ana-
at Iytically, (v,C,J) appear to play more the role of control
o parameters, whilel(,,q,m) will emerge at the end. In this
E:V'MV — oV b— d(1— $)EY]. (5  way, th'e analytic approach is somewhat opposite to that of
simulations, where the lattéformer are the contro{depen-

dend variables.

To find the solutions, we follow previous studies and in-
troduce variables which simplify the structure of these equa-
tions:

These are precisely the equations in Rél. To apply to
our problem, we only need to impose

1
LxLyf Ydxdy=g>0 (6)

x=l¢ and Y=yy. (12)
instead ofg=0. The other constraint,

Note that, unlike the physical densities which are bounded,

1 ~
T f ddxdy=1—m, (7)  xel[lee] and||<x—1e[0g]. Now Eq.(10) becomes
xty
as well as the periodic boundary conditions for the densities, &X=S@+ vx+Cx% (12
of course, remain unchanged.
We may simplify these equations further, by absorbing (?E: 5()(—1)—3)(2—0@)(- (13)

£ into the scale ofy. There is no need to write new equa-
tions, since we can simply drapfrom Eqgs.(4) and(5) while
keeping in mind that., must be replaced bgL,. That the
drive provides an intrinsic length scale implies that the ordi-
nary thermodynamic limit I(,—) must be taken along

Eliminating ¥, we again arrive at an ordinary differential
equation for only one variable:

with £&—0, while holding the productL, fixed. However, w_ o 42 2.2 "A 3 |n Xy A2 '
this simplification may be too confusing and will not be used X' = (X = DI =vix +oCx  fox| 1 2 x|
here. Due to the central role played By, , let us define (14)
e=EL €S)) A - -
y whereJ=J/&, etc. Also, the prime denoteldu&, showing
for future convenience. Eqé4)—(7), completely specify the again the central role played l#yin setting the length scale.
dynamics of our model. For clarity, on the right-hand side of this equation we have
placed all the extra terms due dg# 0.
B. Inhomogeneous steady states Unlike in the neutral system, the interpretation of Eif)

i . as a particle “moving” in a potential has to be modified,
Next we study steady-state solutions to these equation§nce there are “velocity” (i.e., y') dependent “force”

which are spatiallyinhomogeneous. Since we expect theg g |n general, periodic “motion” would be impossible.
densities to be time dependent, let us seek solutions with &¢ ~5rse. here. we must insist on the existence of such
constant velocityp, namely, #(x,y—vt) and #(x,y—vt).  go|ytions. The consequence is a constraint on the last term in

Sim_plifyin_g further, we note that f';lll the states we obsgrve q. (14). In particular, multiplying this equation by’ and
in simulations are homogeneousxnso that we will restrict integrating over the full period, we are led to

ourselves to functions of the form J(x")[v(1—x)+2Cx]du=0. Since we are concerned

d(u) and ¢(u), (9) with inhomogeneoustates, we can expeck()? to be posi-
tive, except for isolated points. Thus it is possible to interpret
whereu=y—ut. Inserting these into Eq¢4) and (5), we  (x')?du/f(x’)?du as a new measure on the interval
have e[0L,], and define a type of average

—vddp=3d[dp+ PY&], fo+(x")2du
—vay=d dav— pad— S(1- B)E), N TP L TR

(15
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Using this notation, we may write a simple relationship be-continuity, there would be, generically, at least one focus
tween the drift velocity and the hole current in the moving (fixed point with spiral orbitslying within. In order to have
frame a physicalsolution, this fixed point must lie in the physical

region:y e[ 1] and|%|< y— 1. Since any fixed point must

v{x=1)=2C{x). (16 lie on the curvey=— (v x+ Cx?), we obtain
Since typically y>1, we conclude that the drift is in the
same direction as the hole current. A similar relationship can (1+0)%>—4C. (22)
be found by integrating Eq12), after multiplication byd.
The result is - .
Recalling that bothv andC are negative, this confines both
—qé=v+Cy, (17)  to be small quantities.
In our case, it is easy to check that there are three fixed
where the bar is the normal average: points, one of which always lies outside the physical region.
Of the remaining two, one is a focus and the other a saddle.
— J--du Based on the characteristics of the neutral system, we expect
= Ly (18) our solution curve to run in between these two fixed points.
Unlike the neutral case, however, the flow is not Hamiltonian
Eliminating C between Eqgs(16) and(17), we see that in general and, in particular, the focus is not necessarily a
center(i.e., eigenvalues corresponding to the flow linearized
v (X— 1) x about the fixed pointnot necessarily purely imaginary
q_g: 2< ) (19 Thus, there is no guarantee that we can find a periodic solu-

tion. One possible scenario is that a unique limit cycle exists
is negative definite. So, for example, if the majority speciedor anygiven (v,C,J), provided they respect the inequalities
is positive(i.e., more particles are driven “upwardg”then  (20) and(22). Another is that ¢,C,J) satisfy a specific re-
the drift of a block state will be “downwards.” This behav- lation which allows for the existence of periodic solutions. A
ior is quite surprising, since we expect the particle-rich zonenatural constraint to impose is that this fixed point be a cen-
to contain more particles of the majority species, so that theéer, with its associated eigenvalues beipgre imaginary
entire block should “advance” with the majority. Instead, This condition is equivalent to setting the coefficient of the
the block drifts in theoppositedirection. On closer exami- lasty’ term in Eq.(14) to zero at that fixed point. This gives
nation, we find that, since the negative regi@m this ex-  us an additional formula for the velocity,
ample forg>0) is thinner, it is easier for positive particles

to penetrate the blockage. Then, due to the periodic boundary oC

conditions, these particles pile up “behind” the positive re- v= 1 (23
gion. As a result, the entire block appears to drift “back- 1- —

wards.” This picture simply provides another perspective on X

the intutive arguements in Sec. lll. Here we have proved that

the structure “retrogrades.” where y* denotes the fixed-point value of at the center.

Clearly, this analysis also leads @q being negative, Using Eq.(10), it is easy to see that the value of the densities
i.e., the holes moving contrary to the majority species, whichat any fixed point satisfies a cubic equation with parameters
is hardly surprising. Before closing this subsection, we(y,C,J). Eliminating y* by Eq.(23), we then obtain a quin-
should comment on a number of other constraints on thec algebraic equation fos alone:
three unknownsy,C,J), independent of the specific values

of (Ly,q,m). A3 A2 A 220 038 2,473, 2303 & N4

In order to have any periodic solution at all, there must be 8Chn+32Chp + 420w+ 2JC =+ 187+ 3Jv°— Crv
some form of restoring “force” in Eq(14). Examining the _255-0 (24
“potential” part of this “force,” ie., (x—1) v

—(3-09)x?*+0vCx8, we see that there would be no “well”

to trap the particle, unless whereC,,=—v —C is the mass current in the moving frame.

However, though this scenario guarantees periodic solutions
J>p2. (20 @& the lowest order in the neighborhooq of the fixed point, we

are unable to prove that, beyond the linear level, this condi-

On the other hand, at IeaSt—v2< is needed, even in the tion is either necessary or sufficient for the existence of pe-

neutral case. The cubic term further exacerbates the situatiof0dic solutions. There is, nevertheless, some numerical evi-
The constraint that a “well” exists turns out to be dence that such solutions are available, as we will show in

Sec. V. Equation(24) prescribes a surface(C,J) in the
0C[4—183-02)+ 270 C]<(3-0)1-4(3—0?)]. C-J plane. Subject to numerical uncertainties, we find that
(22) the parametersu(C,J) generated by simulations indeed
span a surface consistent with this scenario. Given the addi-
More information can be gleaned from regarding Egs.tional good agreement of the density profiles from numerical
(12 and (13) as flows in a “phase” plane. If a periodic solutions and simulations in Sec. V, this latter scenario ap-
solution exists, it would correspond to a closed loop and, byears to be the more probable one.
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+ E=0.8327, L =40
10} o E=0.1976, L =160
' gy, — E=0.0986, L =320

— LHS
0.0 o RHS (A=1.5)]
00 02 04 06 08 1.0 - RHS (A=0)
u/L, .
120 160
FIG. 4. Predicted field-size scaling is confirmed by simulations u
for different E and L, with fixed £L,. L,=20, p+=%, and ) . .
; ~0.16. F_IG. 5 Typl_cal tests of local propert_les of the continuum model
against simulations fdia) the hole equatiofil2), and(b) the charge
V. FIELD-SIZE SCALING equation(13), demonstrating the significance of the correction term
AND COMPARISONS WITH SIMULATIONS °‘>‘5P+P xin the latterL,=40,L,=160,E=0.1976,p , = and

_=0.1.
To determine how closely the continuum model corre-
sponds to the discrete model, we subject our theoretical prénside the brackets on the right-hand side of B). Due to
dictions to the tests of simulations. The first is concernedhe opposite signs, they cancel out in 4. for the hole(or
with the scaling behavior in the system size and fieldmass$ density but contribute an extra term to H§) for the
strength. Choosing the alternative set of control parametersharge density. These terms represent the lowest order cor-
(Ly,dq,m) in favor of (v,C,J), Egs.(12) and(13) imply that  rections to our mean-field equations in Sec. IV. After such a
the solutions for the densities obey a simple scaling f@  term —2\&p, p_x is added to the right-hand side of Eq.
[4,6,10): (13), significant improvements are found, for a suitable pro-
_ portional constank [the solid line in Fig. §b)]. Notice that
x(u,E,Ly,q,m)=F,(&u,éLy,q,m)=F,(u/L,,EL,,q,m), the value ofA may be estimated from the two-point density
(25) correlation function$10].

Further comparisons are concerned with the mean current
whereF, andF, are appropriate scaling functions. Similar and drift velocity. The mass currertC— v in the labora-
scaling form holds fory, of course. Monte Carlo simula- oy frame, finite forg>0, is simply given byg€, which is
tions, with flxedp+ and varylngp _, using a wide range of obtained by integrating the first of Eq4.0). Excellent agree-

Ly andE with fixede=£L, show excellent agreement. An ment with simulations is found, as shown in Figag This
example is shown in Fig. 4. One immediate implication of comparison does not involve the correction terms. Other
this result is that the thermodynamic limit has to be taken
with care, as phase transitions survive only in the double

0.004 F (a) — simulation

limits E—0 andL,— with & held fixed. 2

A more stringent test is to check to what extent the data it o from Eq.(10)
actually satisfy the differential equatiori$2) and (13). In é
the continuum description, it is more natural to use the cur- e 0002}
rents in the moving frame because they are the integration %’
constants. In simulations, tiepatial and temporabverage = 0 ¢
currents in the lab frame are more accessible. They are re- 0.004 (b) T fsr‘g‘nl:'ggo(;e) (mt5) -
lated. FoLexampIe, the hole current in the lab frame is given R A from Eq.(28) (A=1.5)
by C+uv ¢, which is greater tha, in magnitude. Withno T oozl +X:j:[§$ e o

tuning parameterEq. (12) for the hole density fits the data
very well [see Fig. 5a)], but there are appreciable discrep-
ancies in Eq(13) for the charge density in the particle-rich
region[see the dashed line in Fig(t§]. Similar discrepan-
cies were also observed in a closely related model consisting
of two species driven along orthogonal directiddg]. In FIG. 6. Comparison between theory and simulation (&rthe
that model, the asymmetry between the ) and (—+)  mass current in the laboratory frameC—v ¢, and(b) the (nega-
nearest-neighbor correlations along the field direction wasgve) drift velocity with and without the correction term, as a func-
shown to give rise to additional cubic terms of the formtion of the average density of the minority specids.= 20,

+\p.p_¢Ey in the currents for the: species, which enter L,=160,E=0.1976, andp , = ;.
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\ terms can no longer be ignored. These comparisons pro-
vide strong support to our claim that the continuum model,
which may be systematically refined if necessary, represents
a surprisingly accurate description of the simulated discrete
model.

T
o simulation

VI. CONCLUDING REMARKS

p(u)

To summarize, we studied, using both Monte Carlo tech-
nigues and the continuum mean-field method, a diffusive
system of two species of particles, driven in opposite direc-
tions by an external field. Witperiodicboundary conditions
. imposed, this system settles intamanequilibriumstate with

0 40 80 120 160 a steady current. For simplicity, we restricted ourselves to
u noninteracting particles, apart from an excluded volume con-
traint. Thus, as the particle densities increase, this system

FIG. 7. Excellent agreement between theory and simulation foundergoes a phase transition, from a homogeneous disor-
the density profilesL,=160,E=0.1976,p , =0.272,p_=0.184,  dered phase with a high current to an inhomogeneous one
and\=0. with minute current. In the latter state, the two species im-

pede each other so much that they form a blockage of high,
predictions, such as Eq4.9) and(23), derived by using both |ocal-particle density. When the particle densities are
the hole and charge equations without do not agree as equal this spatial structure displays a counterintuitive behav-
well. Figure @b) exhibits increasing deviations & in-  ior. It drifts with a constant velocity, in a directiapposite
creases. The agreement, however, can again be significantly that favored by the majority species. Remarkably, simula-
improved by including the. terms, with the same choice of tion results agree reasonably well with most aspects of the
A~1.5as in Fig. 5. Wit #0, Eq.(19) is slightly modified:  theory, especially the prediction &fL, scaling. On the
4 (g,m) plane, qualitative trends predicted by the linear stabil-
v ( 2 +(x—1hx ity lines of the homogeneous solutions to the mean-field

(26)

q_g_ - 2(1—N) (X ' equationg12) and(13) are also consistent with simulations.
On the other hand, there are clear signs of disagreement,
where, similar to Eq(15), mainly in connection with Eq(13). Since our theory is based
a2 on mean-field assumptions, one avenue for improvement is
- J--(X'Ix")"du (27 o take some correlations into account. The simplest addi-
M T IxMAdu

tion, involving cubic term$10] in Eq. (3) lead to significant
improvements. Encouraged by these findings, we are under-
Also, Eg.(23) becomes taking a comprehensive study, including a general phase dia-
gram in the ,m) plane, of the effects of such terms. In this

v= M (29) paper, we focused only on the drifting inhomogeneous state.
1+ A-1 Although we performed some analysis for themogeneous
x* state[14], much remains to be investigated. For example, it

would be desirable to observe, in simulations, the drift of

where x* is approximated by the spatial maximugg,., in fluctuations from the uniform densities. Of course, as in the
Fig. 6, the error incurred is very small as both quantities araeutral case, we should expect long-range correla{i8hs
much greater than 1. Clearly, theterms play an important When restricted to one dimensidine., one columjp this
role, so that a good understanding of their origin is desirablemodel is exactly soluabl§l16,17, since the order of any
We have made some progress toward this goal, and megarticular string of+’s and —’s is invariant, and no phase
sured several correlations as a confirmation. However, beinggansitions can occur. With open boundary conditions, it can
beyond both the aim and the scope of this paper, these resulte mapped onto the Rubinstein-Duke model for electro-
will be deferred to another publicatidi4]. phoresis[18], and more interesting phenomena can occur.

The final convincing evidence for the quantitative agree-Beyond the simple model studied here, there are many other
ment is a direct comparison of the density profiles. For simgeneralizations which may be relevant to a variety of physi-
plicity, we consider only the case af=0. The fixed-point cal systems. We mention only a few here.
condition mentioned near the end of Sec. IV picks out a The existence of the inhomogeneous state depends cru-
uniquev for a given set of currentsJ(C) via Eq. (24). cially on the mutual blocking between the species. To find
Equations(10) then contain no free parameter, and we canout the importance of this effect, we may introduce “charge-
obtain the profiles by numerical integration, using for in- exchange” processes which take place at a fraction of the
stance the Runge-Kutta methft5]. A typical comparison particle-hole exchange rate. As in the neutral ddsd, we
with the simulated profiles using the same set of parametersan expect to find the transition between the disordered and
(a,m,Ly,E) is presented in Fig. 7. The agreement for thisinhomogeneous states to be both continuous and discontinu-
case of a rather smaij=0.09 is again excellent, even with- ous. It would be interesting to map out a complete phase
out . We expect more deviations for larggr where the diagram in the £L,,m,q) space. Further, such a system can
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display interesting behavior even in one dimendib8], es- external drives, there would be rich phase diagrams if inter-
pecially with open boundarig®0]. In particular, it is closely actions were presenti3,12. Thus, it is natural to inquire
related to the model of “first and second class particles”how the drive would modify these phase transitions. We are
(e.g., cars and trucksnoving on a ring, in which a first class aware of only one study of a driven system with two inter-
particle is allowed to overtake a second class one with somacting specie$23]. Though the regime investigated was ex-
rate[21]. In that case, there are distinct phases, with propertremely limited, several interesting features were found.
ties reminiscent of our inhomogeneous states. The qualitative Finally, we point out that, in physical systems such as fast
Vs quantitative similarities should be investigated. ionic conductors, the two species may be of different mobili-
Another generalization involves the two species beingies and different “charges.” These properties add two di-
driven in orthogonal directions. These models are motivatednensions to the phase space, leading to seemingly endless
by the phenomena of traffic flow in city blocks and display ahorizons for future explorations.
considerable variety of phas§®,10. However, we believe
that Fhere are no studies witlmequalnumpers of Fhe two ACKNOWLEDGMENTS
speciegthough we are aware of a study with varying densi-
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